The Preserve at Indian Hills Draft Environmental Impact Statement Subdivision/Site Plan Application, Fort Salonga

Appendix J-7
SONIR Model Results: Alternative 4

NAME OF PROJECT

Indian Hills - Alternative 4 Fort Salonga, NY

DATA INPUT FIELD

\boldsymbol{A}	Site Recharge Parameters	Value	Units	В	Nitrogen Budget Parameters	Value	Units
1	Area of Site	151.09	acres	1	Persons per Dwelling	2.93	persons
2	Precipitation Rate	49.90	inches	2	Nitrogen per Person per Year	10.0	lbs
3	Acreage of Fertilized Landscaping	44.75	acres	3	a. Sanitary Nitrogen Leaching Rate	84%	percent
4	Fraction of Land in above	0.296	fraction	3	b. Treated Sanitary Nitrogen Leaching Rate	100%	percent
5	Evapotranspiration from above	21.20	inches	4	Fertilized Landscaping	44.75	acres
6	Runoff from above	0.50	inches	5	Fertilizer Application Rate (for above)	2.04	lbs/1000 sq ft
7	Acreage of Unfertilized Landscaping	61.24	acres	6	Fertilizer Nitrogen Leaching Rate (for above)	30%	percent
8	Fraction of above	0.405	fraction	7	Fertilized Land (other, if applicable)	0.00	acres
9	Evapotranspiration from above	21.20	inches	8	Fertilizer Application Rate (for above)	0.00	lbs/1000 sq ft
10	Runoff from above	0.50	inches	9	Fertilizer Nitrogen Leaching Rate (for above)	0%	percent
11	Acreage of Unvegetated/Dirt Roads	3.20	acres	10	Outdoor Cat Population	0.19	pets/dwelling
12	Fraction of above	0.021	fraction	11	Cat Waste Nitrogen Load	3.22	lbs/pet/year
13	Evapotranspiration from above	21.20	inches	12	Outdoor Dog Population	0.35	pets/dwelling
14	Runoff from above	0.00	inches	13	Dog Waste Nitrogen Load	4.29	lbs/pet/year
15	Acreage of Water/Ponds	3.63	acres	14	Pet Waste Nitrogen Leaching Rate	25%	percent
16	Fraction of Site in above	0.024	fraction	15	Area of Land Irrigated	44.75	acres
17	Evaporation from above	30.00	inches	16	Irrigation Rate	24.00	inches
18	Makeup Water (if applicable)	0.00	inches	17	Irrigation Nitrogen Leaching Rate	10%	percent
19	Acreage of Natural	25.55	acres	18	Atmospheric Nitrogen Application/Load	0.04	lbs/1000 sq ft
20	Fraction of above	0.169	fraction	19	Atmos. N Leaching Rate (Natural/Wetlands)	25%	percent
21	Evapotranspiration from above	21.20	inches	20	Atmos. N Leaching Rate (Turf/Landscaped)	20%	percent
22	Runoff from above	0.50	inches	21	Atmos. N. Leaching Rate (Ag; Imperv; Other)	40%	percent
23	Acreage of Impervious/Paved/Bldgs	12.72	acres	22	Nitrogen in Water Supply	2.00	mg/l
24	Fraction of Land in above	0.084	fraction	23	Nitrogen in Sanitary Flow	50.00	mg/l
25	Evapotrans. from above	4.99	inches				
26	Runoff from Impervious	0.00	inches				
23	Acreage of Other	0.00	acres	C	Comments		
24	Fraction of Land in above	0.000	fraction	1)	Please refer to user manual for data input instructions; up	dated per LINAP	
25	Evapotrans. from above	21.20	inches				
26	Runoff from above	0.00	inches				
27	Acreage of Land Irrigated	44.75	acres				
28	Fraction of Land Irrigated	0.296	fraction				
29	Irrigation Rate	24.00	inches				
30	Number of Dwellings	98	units				
31	Water Use per Dwelling	300	gal/day				
32	Wastewater Design Flow (clubhouse)	600	gal/day		Total Acreage Check	151.1	100%

Indian Hills - Alternative 4

SITE RECHARGE COMPUTATIONS

A Fertilized Landscaping	Value	Units	В	Unfertilized Landscaping	Value	Units
1 A = Fraction of Land in Cover Type	0.296	fraction	1	A = Fraction of Land in Cover Type	0.405	fraction
2 P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3 E = Evapotranspiration Rate	21.20	inches	3	E = Evapotranspiration Rate	21.20	inches
4 $Q = Runoff Rate$	0.50	inches	4	Q = Runoff Rate	0.50	inches
S R(a) = P - (E + Q)	28.20	inches	5	R(b) = P - (E + Q)	28.20	inches
$6 R(A) = R(a) \times A$	8.35	inches	6	$R(B) = R(b) \times A$	11.43	inches
C Unvegetated/Dirt Roads	Value	Units	D	Water/Ponds		
1 A = Fraction of Land in Cover Type	0.021	fraction	1	A = Fraction of Site in Water	0.024	fraction
2 P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3 E = Evapotranspiration Rate	21.20	inches	3	E = Evaporation Rate	30.00	inches
4 Q = Runoff Rate	0.00	inches	4	Q = Runoff Rate	0.00	inches
5 $R(c) = P - (E + Q)$	28.70	inches	5	M = Makeup Water	0.00	inches
$6 R(C) = R(c) \times A$	0.61	inches	6	$R(d) = \{P - (E+Q)\} - M$	19.90	inches
			7	$R(D) = R(d) \times A$	0.48	inches
				1	1	
E Natural			F	Impervous/Paved/Roads	Value	Units
1 A = Fraction of Land in Cover Type	0.169	fraction	1	A = Fraction of Land in Cover Type	0.084	fraction
2 P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3 E = Evapotranspiration Rate	21.20	inches	3	E = Evapotranspiration Rate	4.99	inches
4 Q = Runoff Rate	0.50	inches	4	Q = Runoff Rate	0.00	inches
5 $R(e) = P - (E + Q)$	28.20	inches	5	R(f) = P - (E + Q)	44.91	inches
$6 R(E) = R(e) \times A$	4.77	inches	6	$R(F) = R(f) \times A$	3.78	inches
				T		
G Other	0.00-		<u> </u>			l
	0.000	fraction	$ \parallel$ 1	A = Fraction of Land Irrigated	0.296	fraction
1 A = Fraction of Land in Cover Type						
2 P = Precipitation Rate	49.90	inches	2	8	24.00	inches
	49.90	inches	-	I = Irrigation Rate E = Evaptranspiration Rate	24.00	inches

G	Other			H	H Irrigation Recharge		
1	A = Fraction of Land in Cover Type	0.000	fraction	1	A = Fraction of Land Irrigated	0.296	fraction
2	P = Precipitation Rate	49.90	inches	2	I = Irrigation Rate	24.00	inches
3	E = Evapotranspiration Rate	21.20	inches	3	E = Evaptranspiration Rate	21.40	inches
4	Q = Runoff Rate	0.00	inches	4	Q = Runoff Rate	0.00	inches
5	R(g) = P - (E + Q)	28.70	inches	5	R(h) = I - (E + Q)	2.60	inches
6	$R(G) = R(g) \times A$	0.00	inches	6	$R(H) = R(H) \times A$	0.77	inches

I	Wastewater Recharge		\boldsymbol{J}	Runoff Recharge			
1	WDF = Wastewater Design Flow	600	gal/day	1	Q(A) = Runoff from Landscaped	0.148	inches
2	WDF = Wastewater Design Flow	29,280	cu ft/yr	2	Q(B) = Runoff from Unfertilized Landscaping	0.203	inches
3	A = Area of Site	6,581,480	sq ft	3	Q(C) = Runoff from Unvegetated	0.000	inches
4	R(j) = WDF/A	0.00	feet	4	Q(E) = Runoff from Natural	0.085	inches
5	R(I) = Wastewater Recharge	0.05	inches	5	Q(H) = Runoff from Other	0.000	inches
		6	Q(I) = Runoff from Irrigation	0.00	inches		
		7	Q(tot) = Q(A)+Q(B)+Q(C)+Q(E)+Q(H)+Q(I)	0.44	inches		

Total Site Recharge					
R(T) =	R(A)+R(B)+R	R(C)+R(D)+R(E)+R(F)+R(G)+R(H)+R(I)+R(J)+Q(tot)			
R(T) =	30.68	inches			

SITE NITROGEN BUDGET

Indian Hills - Alternative 4

SITI	<u>E NITROGEN BUDGET</u>			_		r	1
				В	Cat Waste Nitrogen	Value	Units
A Sani	itary Nitrogen-Residential	Value	Units	1	Number of Cats per Dwelling	0.19	cats/dwelling
1 Num	nber of Dwellings	98	units	2	Number of Cats (Cats/dwelling x dwellings)	18	cats
2 Perso	ons per Dwelling	2.93	capita	3	Cat Waste Nitrogen Load	3.22	lbs/cat/year
3 P = I	Population	287.14	capita	4	N(p) = AR x cats x Adjustment (if applicable)	58.38	lbs/year
4 N =	Nitrogen per person	10	lbs	5	LR = Leaching Rate	25%	percent
6 N =	(total; pre loss/removal)	2871.4	lbs	6	$N(P) = N(p) \times LR$	14.59	lbs
7 LR =	= Leaching Rate	84%	percent	7	N = (loss/removed)	43.78	lbs
8 N(S)	$) = P \times N \times LR$	2411.98	lbs				
9 N =	loss/removed	459.42	lbs	B'	Dog Waste Nitrogen	Value	Units
				1	Number of Dogs per Dwelling	0.35	dogs/dwelling
				2	Number of Dogs (Dogs/dwelling x dwellings)	34	dogs
C Sani	itary Nitrogen (Wastewater Design Flo	w)		3	Dog Waste Nitrogen Load	4.29	lbs/dog/year
1 CF =	= Commercial/STP Flow	600	gal/day	4	$N(p) = AR \times dogs \times Adjustment (if applicable)$	147.15	lbs/year
2 CF =	= Commercial/STP Flow	828,915	liters/yr	5	LR = Leaching Rate	25%	percent
5 N=N	Nitrogen	50.00	mg/l	6	$N(P) = N(p) \times LR$	36.79	lbs
6 N =	Nitrogen	91.39	lbs	7	N = (loss/removed)	110.36	lbs
7 LR =	= Leaching Rate	84%	percent				
8 N(S)) = CF x N x LR	34,814,430	milligrams	D	Water Supply Nitrogen (other than wastewater, if applical	ble)	
9 N(S)) = Sanitary Nitrogen	76.77	lbs	1	WDF = Wastewater Design Flow	0	gal/day
10 N =	loss/removed	14.62	lbs	2	WDF = Wastewater Design Flow	0	liters/yr
				3	N = Nitrogen in Water Supply	50.00	mg/l
				4	$N(WW) = WDF \times N$	0	milligrams
E Fertilized Land (Fertilized Landscaping)		5	N(WW) = Wastewater Nitrogen	0.00	lbs		
1 A = .	Area of Land Fertilized	1,949,310	sq ft				
2 AR =	= Application Rate	2.04	lbs/1000 sf	F	Fertilized Land (Unfertilized Landscaping)		
3 N(T)) = Nitrogen (total applied)	3976.59	lbs	1	A = Area of Land Fertilized 2	0	sq ft
4 LR =	= Leaching Rate	30%	percent	2	AR = Application Rate	0.00	lbs/1000 sf
5 N(F1	$1) = A \times AR \times LR$	1192.98	lbs	3	N(T) = Nitrogen (total applied)	0.00	lbs
6 N =	loss/removed	2783.61	lbs	4	LR = Leaching Rate	0%	percent
				5	$N(F2) = A \times AR \times LR$	0.00	lbs
				6	N = loss/removed	0.00	lbs
G Atmo	ospheric Nitrogen (existing condition)					-	1
1 Appl	lication Load	0.041	lbs/1000 sf	H	Irrigation Nitrogen		
2 Area	a of Natural/Wetlands/1000 sf	3,939	1000 sf	1	R = Irrigation Recharge (inches)	0.77	inches
3 Leac	ching Rate	25%	percent	2	R = Irrigation Rate (feet)	0.0642	feet
	os. N Load-1 (natural/wetlands)	40.37	lbs/year	3	A = Area of Land Irrigated	1,045,440	sq ft
	a of turf/landscaped/1000 sf	1,949	1000 sf	4	$R(I) = R(irr) \times A$	67,089	cu ft
	ching Rate	20%	percent	5	R(I) = Site Irrigation (liters)	1,899,948	liters
	ios. N Load-2 (golf/turf)	15.98	lbs/year	6	N = Nitrogen in Water Supply	2.00	mg/l
	a of Impervious/Agricult/1000 sf	554	1000 sf	7	N(T) = Nitrogen (total applied)	8.38	lbs
	ching Rate	40%	percent	8	LR = Leaching Rate	10%	percent
	ios. N Load-3 (ag; imperv; other)	9.09	lbs/year	9	N(irr) = R(I) x N x LR	379,990	milligrams
	t) = N Load $1 + 2 + 3$	65.44	lbs	10		0.84	lbs
	loss/removed	198.68	lbs	_	N = loss/removed	7.54	lbs
	1000.10110.00	170.00	.00	111	1. ISSUITEMOTES	7.54	100

Total Site Nitrog	en	
N=	N(S) + N(P) + 1	N(WW) + N(F1) + N(F2) + N(ppt) + N(irr)
N=	3,799.38 1	bs

NAME OF PROJECT

Indian Hills - Alternative 4 Fort Salonga, NY

FINAL COMPUTATIONS

A	Nitrogen in Recharge (concentr.)	Value	Units
1	N = Total Nitrogen (lbs)	3,799.38	lbs
2	N = Total Nitrogen (milligrams)	1,724,919,313	milligrams
3	R(T) = Total Recharge (inches)	30.68	inches
4	R(T) = Total Recharge (feet)	2.56	feet
5	A = Area of Site	6,581,480	sq ft
6	$R = R(T) \times A$	16,824,855	cu ft
7	R = Site Recharge Volume	476,479,906	liters
9	NR = N/R	3.62	mg/l

CONCENTRATION OF NITROGEN IN RECHARGE

3.62

A	Nitrogen in Recharge	Value	Units
1	N = Total Nitrogen (lbs)	3,799.38	lbs
2	N = Total Nitrogen (milligrams)	1,724,919,313	milligrams
3	R(T) = Total Recharge (inches)	30.68	inches
4	R(T) = Total Recharge (feet)	2.56	feet
5	A = Area of Site	6,581,480	sq ft
6	$R = R(T) \times A$	16,824,855	cu ft
7	R = Site Recharge Volume	476,479,906	liters
9	NR = N/R	3.62	mg/l

В	Site Recharge Summary	Value	Units
1	R(T) = Total Site Recharge	30.68	inches/yr
2	R = Site Recharge Volume	16,824,855	cu ft/yr
3	R = Site Recharge Volume	125,858,668	gal/yr
4	R = Site Recharge Volume	125.86	MG/yr

Conversions used in SONIR	
Acres x $43,560$ = Square Feet	Gallons $x 0.1337 = Cubic Feet$
Cubic Feet x $7.48052 = Gallons$	Gallons $x 3.785 = Liters$
Cubic Feet x $28.32 = Liters$	Grams / 1,000 = Milligrams
Days $x 365 = Years$	Grams $x \ 0.002205 = Pounds$
Feet x 12 = Inches	Milligrams / $1,000 = Grams$

Nitrogen Load Summary - On-Site	Load	Percent
Sanitary Nitrogen (On-Site Wastewater)	2,488.74	65.50%
Fertilized Landscaping	1192.98	31.40%
Dog Waste Nitrogen	36.79	0.97%
Cat Waste Nitrogen	14.59	0.38%
Atmospheric Nitrogen	65.44	1.72%
Irrigation Nitrogen	0.84	0.02%
Total Pounds Nitrogen	3,799,38	100.00%

