APPENDIX J

WATER RESOURCES-RELATED DOCUMENTS

APPENDIX J-1 SONIR COMPUTER MODEL RESULTS

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

NAME OF PROJECT

Indian Hills - Proposed Project - Final EIS

Fort Salonga, NY 7/29/2020

DATA INPUT FIELD

A	Site Recharge Parameters	Value	Units	В	Nitrogen Budget Parameters	Value	Units	
1	Area of Site	154.56	acres	1	Persons per Dwelling	1.50	persons	
2	Precipitation Rate	49.90	inches	2	Nitrogen per Person per Year	10.0	lbs	
3	Acreage of Fertilized Landscaping	31.70	acres	3	a. Sanitary Nitrogen Leaching Rate	84%	percent	
4	Fraction of Land in above	0.205	fraction	3	b. Treated Sanitary Nitrogen Leaching Rate	100%	percent	
5	Evapotranspiration from above	21.20	inches	4	Fertilized Landscaping	31.70	acres	
6	Runoff from above	0.50	inches	5	Fertilizer Application Rate (for above)	1.67	lbs/1000 sq ft	
7	Acreage of Unfertilized Landscaping	71.41	acres	6	Fertilizer Nitrogen Leaching Rate (for above)	10%	percent	
8	Fraction of above	0.462	fraction	7	Fertilized Land (other, if applicable)	0.00	acres	
9	Evapotranspiration from above	21.20	inches	8	Fertilizer Application Rate (for above)	0.00	lbs/1000 sq ft	
10	Runoff from above	0.50	inches	9	Fertilizer Nitrogen Leaching Rate (for above)	0%	percent	
11	Acreage of Unvegetated/Dirt Roads	4.40	acres	10	Outdoor Cat Population	0.19	pets/dwelling	
12	Fraction of above	0.028	fraction	11	Cat Waste Nitrogen Load	3.22	lbs/pet/year	
13	Evapotranspiration from above	21.20	inches	12	Outdoor Dog Population	0.35	pets/dwelling	
14	Runoff from above	0.00	inches	13	Dog Waste Nitrogen Load	4.29	lbs/pet/year	
15	Acreage of Water/Ponds	10.84	acres	14	Pet Waste Nitrogen Leaching Rate	25%	percent	
16	Fraction of Site in above	0.070	fraction	15	Area of Land Irrigated	31.70	acres	
17	Evaporation from above	30.00	inches	16	Irrigation Rate	27.74	inches	
18	Makeup Water (if applicable)	0.00	inches	17	Irrigation Nitrogen Leaching Rate	10%	percent	
19	Acreage of Natural	18.81	acres	18	Atmospheric Nitrogen Application/Load	0.04	lbs/1000 sq ft	
20	Fraction of above	0.122	fraction	19	Atmos. N Leaching Rate (Natural/Wetlands)	25%	percent	
21	Evapotranspiration from above	21.20	inches	20	Atmos. N Leaching Rate (Turf/Landscaped)	20%	percent	
22	Runoff from above	0.50	inches	21	Atmos. N. Leaching Rate (Ag; Imperv; Other)	40%	percent	
23	Acreage of Impervious/Paved/Bldgs	14.95	acres	22	Nitrogen in Water Supply	2.00	mg/l	
24	Fraction of Land in above	0.097	fraction	23	Nitrogen in Sanitary Flow	19.00	mg/l	
25	Evapotrans. from above	4.99	inches					
26	Runoff from Impervious	0.00	inches					
23	Acreage of Other	0.00	acres	C	Comments			
24	Fraction of Land in above	0.000	fraction	1)	Please refer to user manual for data input instructions; u	pdated per LINA	Ρ.	
25	Evapotrans. from above	21.20	inches					
26	Runoff from above	0.00	inches					
27	Acreage of Land Irrigated	31.70	acres					
28	Fraction of Land Irrigated	0.205	fraction					
29	Irrigation Rate	27.74	inches					
30	Number of Dwellings	86	units					
31	Water Use per Dwelling	300	gal/day					
32	Wastewater Design Flow (clubhouse)	29,750	gal/day		Total Acreage Check	152.	1 100%	

28.70

0.82

inches

inches

0.00

19.90

1.40

inches

inches

inches

inches inches inches inches inches

inches

0.39

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

Indian Hills - Proposed Project - Final EIS

SITE RECHARGE COMPUTATIONS

5 | R(c) = P - (E + Q)

 $6 R(C) = R(c) \times A$

A Fertilized Landscaping	Value	Units	В	Unfertilized Landscaping	Value	Units
1 A = Fraction of Land in Cover Type	0.205	fraction	1	A = Fraction of Land in Cover Type	0.462	fraction
2 P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3 E = Evapotranspiration Rate	21.20	inches	3	E = Evapotranspiration Rate	21.20	inches
4 Q = Runoff Rate	0.50	inches	4	Q = Runoff Rate	0.50	inches
5 R(a) = P - (E + Q)	28.20	inches	5	R(b) = P - (E + Q)	28.20	inches
$6 R(A) = R(a) \times A$	5.78	inches	6	$R(B) = R(b) \times A$	13.03	inches
C Unvegetated/Dirt Roads	Value	Units	D	Water/Ponds		
1 A = Fraction of Land in Cover Type	0.028	fraction	1	A = Fraction of Site in Water	0.070	fraction
2 P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3 E = Evapotranspiration Rate	21.20	inches	3	E = Evaporation Rate	30.00	inches
4 Q = Runoff Rate	0.00	inches	4	Q = Runoff Rate	0.00	inches

F	E Natural		F	Impervous/Paved/Roads	Value	Units	
<u>L</u>	1 Adia adi	ı		+ -	Impervous/1 uveu/Rouus	rane	Unus
1	A = Fraction of Land in Cover Type	0.122	fraction	1	A = Fraction of Land in Cover Type	0.097	fraction
2	P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3	E = Evapotranspiration Rate	21.20	inches	3	E = Evapotranspiration Rate	4.99	inches
4	Q = Runoff Rate	0.50	inches	4	Q = Runoff Rate	0.00	inches
5	R(e) = P - (E + Q)	28.20	inches	5	R(f) = P - (E + Q)	44.91	inches
6	$R(E) = R(e) \times A$	3.43	inches	6	$R(F) = R(f) \times A$	4.34	inches

5 M = Makeup Water

 $7 | R(D) = R(d) \times A$

6 $R(d) = \{P - (E+Q)\} - M$

G	Other			H Irrigation Recharge			
1	A = Fraction of Land in Cover Type	0.000	fraction	_1	A = Fraction of Land Irrigated	0.205	fraction
2	P = Precipitation Rate	49.90	inches	2	I = Irrigation Rate	27.74	inches
3	E = Evapotranspiration Rate	21.20	inches	3	E = Evaptranspiration Rate	21.40	inches
4	Q = Runoff Rate	0.00	inches	4	Q = Runoff Rate	0.00	inches
5	R(g) = P - (E + Q)	28.70	inches	5	R(h) = I - (E + Q)	6.34	inches
6	$R(G) = R(g) \times A$	0.00	inches	ϵ	$R(H) = R(H) \times A$	1.30	inches

I	Wastewater Recharge			J	Runoff Recharge	
1	WDF = Wastewater Design Flow	29,750	gal/day	1	Q(A) = Runoff from Landscaped	0.103
2	WDF = Wastewater Design Flow	1,451,815	cu ft/yr	2	Q(B) = Runoff from Unfertilized Landscaping	0.231
3	A = Area of Site	6,732,634	sq ft	3	Q(C) = Runoff from Unvegetated	0.000
4	R(j) = WDF/A	0.22	feet	4	Q(E) = Runoff from Natural	0.061
5	R(I) = Wastewater Recharge	2.59	inches	5	Q(H) = Runoff from Other	0.000
			•	6	Q(I) = Runoff from Irrigation	0.00

Total Site Recharge					
R(T) =	R(A)+R(B)+R(C)+R(D)+R(E)+R(F)+R(G)+R(H)+R(I)+R(J)+Q(tot)				
R(T) =	33.08	inches			

7 Q(tot) = Q(A)+Q(B)+Q(C)+Q(E)+Q(H)+Q(I)

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

SITE NITROGEN BUDGET

Indian Hills - Proposed Project - Final EIS

	SHE MITROGEN BUDGET				C . W . A No.	1 1	** **
_	Ia		T		Cat Waste Nitrogen	Value	Units
A	Sanitary Nitrogen-Residential	Value	Units	_	Number of Cats per Dwelling	0.19	cats/dwelling
1	Number of Dwellings	0	units		Number of Cats (Cats/dwelling x dwellings)	16	cats
-	Persons per Dwelling	1.50	capita	_	Cat Waste Nitrogen Load	3.22	lbs/cat/year
-	P = Population	0.00	capita		N(p) = AR x cats x Adjustment (if applicable)	51.23	lbs/year
-	N = Nitrogen per person	10	lbs		LR = Leaching Rate	25%	percent
6	N = (total; pre loss/removal)	0	lbs		$N(P) = N(p) \times LR$	12.81	lbs
7	LR = Leaching Rate	84%	percent	7	N = (loss/removed)	38.42	lbs
8	$N(S) = P \times N \times LR$	0.00	lbs	_			
9	N = loss/removed	0.00	lbs	B'	Dog Waste Nitrogen	Value	Units
				1	Number of Dogs per Dwelling	0.35	dogs/dwelling
_				2	Number of Dogs (Dogs/dwelling x dwellings)	30	dogs
<u>C</u>	Sanitary Nitrogen (Wastewater Design Flo	w)		3	Dog Waste Nitrogen Load	4.29	lbs/dog/year
1	CF = Commercial/STP Flow	29,750	gal/day	4	$N(p) = AR \times dogs \times Adjustment (if applicable)$	129.13	lbs/year
2	CF = Commercial/STP Flow	41,100,369	liters/yr	5	LR = Leaching Rate	25%	percent
5	N =Nitrogen	19.00	mg/l	6	$N(P) = N(p) \times LR$	32.28	lbs
6	N = Nitrogen	1721.90	lbs	7	N = (loss/removed)	96.85	lbs
7	LR = Leaching Rate	100%	percent				
8	$N(S) = CF \times N \times LR$	780,907,006	milligrams	D	Water Supply Nitrogen (other than wastewater, if applicable	le)	
9	N(S) = Sanitary Nitrogen	1721.90	lbs	1	WDF = Wastewater Design Flow	0	gal/day
10	N = loss/removed	0.00	lbs	2	WDF = Wastewater Design Flow	0	liters/yr
				3	N = Nitrogen in Water Supply	19.00	mg/l
				4	$N(WW) = WDF \times N$	0	milligrams
E	Fertilized Land (Fertilized Landscaping)			5	N(WW) = Wastewater Nitrogen	0.00	lbs
1	A = Area of Land Fertilized	1,380,852	sq ft		1 \ /	•	
2	AR = Application Rate	1.67	lbs/1000 sf	\overline{F}	Fertilized Land (Unfertilized Landscaping)		
3	N(T) = Nitrogen (total applied)	2304.86	lbs	1	A = Area of Land Fertilized 2	0	sq ft
4	LR = Leaching Rate	10%	percent	2	AR = Application Rate	0.00	lbs/1000 sf
5	$N(F1) = A \times AR \times LR$	230.49	lbs		N(T) = Nitrogen (total applied)	0.00	lbs
6	N = loss/removed	2074.38	lbs		LR = Leaching Rate	0%	percent
		207 1000		_	$N(F2) = A \times AR \times LR$	0.00	lbs
					N = loss/removed	0.00	lbs
G	Atmospheric Nitrogen (existing condition)			Ľ	1000/19/10/04	0.00	100
1	Application Load	0.041	lbs/1000 sf	H	Irrigation Nitrogen		
2	Area of Natural/Wetlands/1000 sf	4,402	1000 sf		R = Irrigation Recharge (inches)	1.30	inches
3	Leaching Rate	25%	percent	_	R = Irrigation Rate (feet)	0.1084	feet
4	Atmos. N Load-1 (natural/wetlands)	45.12	lbs/year	3	A = Area of Land Irrigated	1,208,354	sq ft
H	Area of turf/landscaped/1000 sf	1,381	1000 sf		$R(I) = R(irr) \times A$	130,938	cu ft
6	î .	20%	percent		R(I) = Site Irrigation (liters)	3,708,154	liters
7	Atmos. N Load-2 (golf/turf)		lbs/year		N = Nitrogen in Water Supply	2.00	mg/l
-		11.32			11 7		
	Area of Impervious/Agricult/1000 sf	651	1000 sf	7	N(T) = Nitrogen (total applied)	16.35	lbs
-	Leaching Rate	40%	percent		LR = Leaching Rate	10%	percent
$\overline{}$	Atmos. N Load-3 (ag; imperv; other)	10.68	lbs/year	9	$N(irr) = R(I) \times N \times LR$	741,631	milligrams
	N(at) = N Load 1 + 2 + 3	67.13	lbs		N(irr) = Irrigation Nitrogen	1.64	lbs
12	N = loss/removed	196.68	lbs	11	N = loss/removed	14.72	lbs

Total Site Nitrogen					
N=	N(S) + N(P) + N(WW) + N(F1) + N(F2) + N(ppt) + N(irr)				
N=	2,066.24 lbs				

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

NAME OF PROJECT

Indian Hills - Proposed Project - Final EIS Fort Salonga, NY

FINAL COMPUTATIONS

A	Nitrogen in Recharge (concentr.)	Value	Units
1	N = Total Nitrogen (lbs)	2,066.24	lbs
2	N = Total Nitrogen (milligrams)	938,071,463	milligrams
3	R(T) = Total Recharge (inches)	33.08	inches
4	R(T) = Total Recharge (feet)	2.76	feet
5	A = Area of Site	6,732,634	sq ft
6	$R = R(T) \times A$	18,561,756	cu ft
7	R = Site Recharge Volume	525,668,940	liters
9	NR = N/R	1.78	mg/l

CONCENTRATION OF NITROGEN IN RECHARGE

1.78

A	Nitrogen in Recharge	Value	Units
1	N = Total Nitrogen (lbs)	2,066.24	lbs
2	N = Total Nitrogen (milligrams)	938,071,463	milligrams
3	R(T) = Total Recharge (inches)	33.08	inches
4	R(T) = Total Recharge (feet)	2.76	feet
5	A = Area of Site	6,732,634	sq ft
6	$R = R(T) \times A$	18,561,756	cu ft
7	R = Site Recharge Volume	525,668,940	liters
9	NR = N/R	1.78	mg/l

В	Site Recharge Summary	Value	Units
1	R(T) = Total Site Recharge	33.08	inches/yr
2	R = Site Recharge Volume	18,561,756	cu ft/yr
3	R = Site Recharge Volume	138,851,590	gal/yr
4	R = Site Recharge Volume	138.85	MG/yr

Conversions used in SONIR	
Acres x $43,560 = $ Square Feet	Gallons x 0.1337 = Cubic Feet
Cubic Feet x $7.48052 = Gallons$	Gallons x 3.785 = Liters
Cubic Feet $x 28.32 = Liters$	Grams / 1,000 = Milligrams
Days $x 365 = Years$	Grams x $0.002205 = Pounds$
Feet x 12 = Inches	Milligrams / 1,000 = Grams

Nitrogen Load Summary - On-Site	Load	Percent
Sanitary Nitrogen (On-Site Wastewater)	1,721.90	83.34%
Fertilized Landscaping	230.49	11.15%
Dog Waste Nitrogen	32.28	1.56%
Cat Waste Nitrogen	12.81	0.62%
Atmospheric Nitrogen	67.13	3.25%
Irrigation Nitrogen	1.64	0.08%
Total Pounds Nitrogen	2,066,24	100.00%

