APPENDIX J

WATER RESOURCES-RELATED DOCUMENTS

APPENDIX J-1

SONIR COMPUTER MODEL RESULTS

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

NAME OF PROJECT

Indian Hills - Proposed Project - Final EIS Fort Salonga, NY

12/10/2020

DATA INPUT FIELD

						1	· · · · · ·
A	Site Recharge Parameters	Value	Units	B		Value	Units
1	Area of Site	154.56	acres	1	Persons per Dwelling	1.50	persons
2	Precipitation Rate	49.90	inches	2	Nitrogen per Person per Year	10.0	lbs
3	Acreage of Fertilized Landscaping	31.70	acres	3	a. Sanitary Nitrogen Leaching Rate	84%	percent
4	Fraction of Land in above	0.205	fraction	3	b. Treated Sanitary Nitrogen Leaching Rate	100%	percent
5	Evapotranspiration from above	21.20	inches	4	Fertilized Landscaping	31.70	acres
6	Runoff from above	0.50	inches	5	Fertilizer Application Rate (for above)	1.67	lbs/1000 sq ft
7	Acreage of Unfertilized Landscaping	75.77	acres	6	Fertilizer Nitrogen Leaching Rate (for above)	10%	percent
8	Fraction of above	0.490	fraction	7	Fertilized Land (other, if applicable)	0.00	acres
9	Evapotranspiration from above	21.20	inches	8	Fertilizer Application Rate (for above)	0.00	lbs/1000 sq ft
10	Runoff from above	0.50	inches	9	Fertilizer Nitrogen Leaching Rate (for above)	0%	percent
11	Acreage of Unvegetated/Dirt Roads	5.35	acres	10	Outdoor Cat Population	0.19	pets/dwelling
12	Fraction of above	0.035	fraction	11	Cat Waste Nitrogen Load	3.22	lbs/pet/year
13	Evapotranspiration from above	21.20	inches	12	Outdoor Dog Population	0.35	pets/dwelling
14	Runoff from above	0.00	inches	13	Dog Waste Nitrogen Load	4.29	lbs/pet/year
15	Acreage of Water/Ponds	9.75	acres	14	Pet Waste Nitrogen Leaching Rate	25%	percent
16	Fraction of Site in above	0.063	fraction	15	Area of Land Irrigated	31.70	acres
17	Evaporation from above	30.00	inches		Irrigation Rate	27,74	inches
18	Makeup Water (if applicable)	0.00	inches	17	Irrigation Nitrogen Leaching Rate	10%	percent
19	Acreage of Natural	17.04	acres		Atmospheric Nitrogen Application/Load	0.04	lbs/1000 sq ft
20	Fraction of above	0.110	fraction		Atmos. N Leaching Rate (Natural/Wetlands)	25%	percent
21	Evapotranspiration from above	21.20	inches		Atmos. N Leaching Rate (Turf/Landscaped)	20%	percent
22	Runoff from above	0.50	inches		Atmos. N. Leaching Rate (Ag; Imperv; Other)	40%	percent
23	Acreage of Impervious/Paved/Bldgs	14.95	acres		Nitrogen in Water Supply	2.00	mg/l
	Fraction of Land in above	0.097	fraction		Nitrogen in Sanitary Flow	19.00	mg/l
25	Evapotrans. from above	4.99	inches				
26	Runoff from Impervious	0.00	inches	1			
23	Acreage of Other	0.00	acres	$\left \right _{C}$	Comments		
24	Fraction of Land in above	0.000	fraction		Please refer to user manual for data input instructions; up	dated ner I INAP	
	Evapotrans. from above	21.20	inches	11.7	Theuse refer to user manual for data input instructions, up	dated per EntAr	
	Runoff from above	0.00	inches	11			
	Acreage of Land Irrigated	31.70	acres	11			
	Fraction of Land Irrigated	0.205	fraction	11			
	Irrigation Rate	27.74	inches				
	Number of Dwellings	86	units				
	Water Use per Dwelling						
		300	gal/day				1011
32	Wastewater Design Flow (clubhouse)	29,750	gal/day		Total Acreage Check	154.6	100%

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

Indian Hills - Proposed Project - Final EIS

SITE RECHARGE COMPUTATIONS

				-			
A Fertilized Land	lscaping	Value	Units	B	Unfertilized Landscaping	Value	Units
1 $A =$ Fraction of	Land in Cover Type	0.205	fraction	1	A = Fraction of Land in Cover Type	0.490	fraction
2 P = Precipitatio	n Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3 E = Evapotrans	piration Rate	21.20	inches	3	E = Evapotranspiration Rate	21.20	inches
4 Q = Runoff Rat	e	0.50	inches	4	Q = Runoff Rate	0.50	inches
5 $R(a) = P - (E +$	Q)	28.20	inches	5	R(b) = P - (E + Q)	28.20	inches
$6 R(A) = R(a) \times A$		5.78	inches	6	$R(B) = R(b) \times A$	13.82	inches

С	Unvegetated/Dirt Roads	Value	Units	D	Water/Ponds		
1	A = Fraction of Land in Cover Type	0.035	fraction	1	A = Fraction of Site in Water	0.063	fraction
2	P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3	E = Evapotranspiration Rate	21.20	inches	3	E = Evaporation Rate	30.00	inches
4	Q = Runoff Rate	0.00	inches	4	Q = Runoff Rate	0.00	inches
5	R(c) = P - (E + Q)	28.70	inches	5	M = Makeup Water	0.00	inches
6	$R(C) = R(c) \times A$	0.99	inches	6	$R(d) = {P - (E+Q)} - M$	19.90	inches
				7	$R(D) = R(d) \times A$	1.26	inches

E	Natural			F	Impervous/Paved/Roads	Value	Units
1	A = Fraction of Land in Cover Type	0.110	fraction	1	A = Fraction of Land in Cover Type	0.097	fraction
2	P = Precipitation Rate	49.90	inches	2	P = Precipitation Rate	49.90	inches
3	E = Evapotranspiration Rate	21.20	inches	3	E = Evapotranspiration Rate	4.99	inches
4	Q = Runoff Rate	0.50	inches	4	Q = Runoff Rate	0.00	inches
5	R(e) = P - (E + Q)	28.20	inches	5	R(f) = P - (E + Q)	44.91	inches
6	$R(E) = R(e) \ge A$	3.11	inches	6	$R(F) = R(f) \times A$	4.34	inches

G	G Other				Irrigation Recharge		
1	A = Fraction of Land in Cover Type	0.000	fraction	1	A = Fraction of Land Irrigated	0.205	fraction
2	P = Precipitation Rate	49.90	inches	2	I = Irrigation Rate	27.74	inches
3	E = Evapotranspiration Rate	21.20	inches	3	E = Evaptranspiration Rate	21.40	inches
4	Q = Runoff Rate	0.00	inches	4	Q = Runoff Rate	0.00	inches
5	R(g) = P - (E + Q)	28.70	inches	5	R(h) = I - (E + Q)	6.34	inches
6	$R(G) = R(g) \ge A$	0.00	inches	6	$R(H) = R(H) \times A$	1.30	inches

I	Wastewater Recharge			J	Runoff Recharge		
1	WDF = Wastewater Design Flow	29,750	gal/day	1	Q(A) = Runoff from Landscaped	0.103	inches
2	WDF = Wastewater Design Flow	1,451,815	cu ft/yr	2	Q(B) = Runoff from Unfertilized Landscaping	0.245	inches
3	A = Area of Site	6,732,634	sq ft	3	Q(C) = Runoff from Unvegetated	0.000	inches
4	R(j) = WDF/A	0.22	feet	4	Q(E) = Runoff from Natural	0.055	inches
5	R(I) = Wastewater Recharge	2.59	inches	5	Q(H) = Runoff from Other	0.000	inches
				6	Q(I) = Runoff from Irrigation	0.00	inches
				7	Q(tot) = Q(A)+Q(B)+Q(C)+Q(E)+Q(H)+Q(I)	0.40	inches

Total Site Recharge							
R(T) =	R(A)+R(B)+R(C)+R(D)+R(E)+R(F)+R(G)+R(H)+R(I)+R(J)+Q(tot)						
R(T) =	33.60 inches						

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

Indian Hills - Proposed Project - Final EIS

SITE NITROGEN BUDGET

SITE NITROGEN BUDGET						1
		1			Value	Units
A Sanitary Nitrogen-Residential	Value	Units		Number of Cats per Dwelling	0.19	cats/dwelling
1 Number of Dwellings	0	units	$ ^2$	0 0	16	cats
2 Persons per Dwelling	1.50	capita	3		3.22	lbs/cat/year
3 P = Population	0.00	capita	4	N(p) = AR x cats x Adjustment (if applicable)	51.23	lbs/year
4 N = Nitrogen per person	10	lbs	5	LR = Leaching Rate	25%	percent
6 N = (total; pre loss/removal)	0	lbs	6	$N(P) = N(p) \times LR$	12.81	lbs
7 LR = Leaching Rate	84%	percent	7	N = (loss/removed)	38.42	lbs
$8 N(S) = P \times N \times LR$	0.00	lbs				
9 N = loss/removed	0.00	lbs	B	Dog Waste Nitrogen	Value	Units
			1	Number of Dogs per Dwelling	0.35	dogs/dwelling
			2	Number of Dogs (Dogs/dwelling x dwellings)	30	dogs
C Sanitary Nitrogen (Wastewater Design F	low)		3	Dog Waste Nitrogen Load	4.29	lbs/dog/year
1 CF = Commercial/STP Flow	29,750	gal/day	4	$N(p) = AR \times dogs \times Adjustment (if applicable)$	129.13	lbs/year
2 CF = Commercial/STP Flow	41,100,369	liters/yr	5	LR = Leaching Rate	25%	percent
5 N =Nitrogen	19.00	mg/l	6	$N(P) = N(p) \times LR$	32.28	lbs
6 N = Nitrogen	1721.90	lbs	7	N = (loss/removed)	96.85	lbs
7 LR = Leaching Rate	100%	percent				
$8 N(S) = CF \times N \times LR$	780,907,006	milligrams	D	Water Supply Nitrogen (other than wastewater, if applical	ole)	
9 N(S) = Sanitary Nitrogen	1721.90	lbs	1	WDF = Wastewater Design Flow	0	gal/day
10 N = loss/removed	0.00	lbs	2	WDF = Wastewater Design Flow	0	liters/yr
			3	N = Nitrogen in Water Supply	19.00	mg/l
				$N(WW) = WDF \times N$	0	milligrams
E Fertilized Land (Fertilized Landscaping)			5	N(WW) = Wastewater Nitrogen	0.00	lbs
1 $A = $ Area of Land Fertilized	1,380,852	sq ft		· · · · · · · · · · · · · · · · · · ·		
2 AR = Application Rate	1.67	lbs/1000 sf	F	Fertilized Land (Unfertilized Landscaping)		
3 $N(T) = Nitrogen (total applied)$	2304.86	lbs		A = Area of Land Fertilized 2	0	sq ft
4 LR = Leaching Rate	10%	percent	2	AR = Application Rate	0.00	lbs/1000 sf
5 $N(F1) = A \times AR \times LR$	230.49	lbs		N(T) = Nitrogen (total applied)	0.00	lbs
6 N = loss/removed	2074.38	lbs		LR = Leaching Rate	0%	percent
	-			$N(F2) = A \times AR \times LR$	0.00	lbs
				N = loss/removed	0.00	lbs
G Atmospheric Nitrogen (existing condition))					
1 Application Load	0.041	lbs/1000 sf	H	Irrigation Nitrogen		
2 Area of Natural/Wetlands/1000 sf	4,468	1000 sf	1	R = Irrigation Recharge (inches)	1.30	inches
3 Leaching Rate	25%	percent		R = Irrigation Rate (feet)	0.1084	feet
4 Atmos. N Load-1 (natural/wetlands)	45.79	lbs/year	3	A = Area of Land Irrigated	1,208,354	sq ft
5 Area of turf/landscaped/1000 sf	1,381	1000 sf	4	$R(I) = R(irr) \times A$	130,938	cu ft
6 Leaching Rate	20%	percent	5	R(I) = Site Irrigation (liters)	3,708,154	liters
7 Atmos. N Load-2 (golf/turf)	11.32	lbs/year		N = Nitrogen in Water Supply	2.00	mg/l
8 Area of Impervious/Agricult/1000 sf	651	1000 sf	7	N(T) = Nitrogen (total applied)	16.35	lbs
9 Leaching Rate	40%	percent	8	LR = Leaching Rate	10%	percent
10 Atmos. N Load-3 (ag; imperv; other)	10.68	lbs/year	9	$N(irr) = R(I) \times N \times LR$	741,631	milligrams
11 $N(at) = N \text{ Load } 1 + 2 + 3$	67.80	lbs	10	N(irr) = Irrigation Nitrogen	1.64	lbs
12 N = loss/removed	198.69	lbs		N = loss/removed	14.72	lbs

Total Site Nitrogen								
N=	N(S) + N(P)	+ N(WW) + N(F1) + N(F2) + N(ppt) + N(irr)						
N=	2,066.91	lbs						

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

NAME OF PROJECT

Indian Hills - Proposed Project - Final EIS Fort Salonga, NY

FINAL COMPUTATIONS

A	Nitrogen in Recharge (concentr.)	Value	Units			
1	N = Total Nitrogen (lbs)	2,066.91	lbs			
2	N = Total Nitrogen (milligrams)	938,375,523	milligrams			
3	R(T) = Total Recharge (inches)	33.60	inches	CONCENTRATION OF		
4	R(T) = Total Recharge (feet)	2.80	feet	NITROGEN IN RECHARGE		
5	A = Area of Site	6,732,634	sq ft			
6	$R = R(T) \times A$	18,851,819	cu ft		1.76	
7	R = Site Recharge Volume	533,883,507	liters			
9	NR = N/R	1.76	mg/l			
A	Nitrogen in Recharge	Value	Units	Conversions used in SONIR		
1	N = Total Nitrogen (lbs)	2,066.91	lbs	Acres x 43,560 = Square Feet	Gallons x 0.1337	= Cubic Feet
2	N = Total Nitrogen (milligrams)	938,375,523	milligrams	Cubic Feet x 7.48052 = Gallons	Gallons x 3.785 =	Liters
3	R(T) = Total Recharge (inches)	33.60	inches	Cubic Feet x 28.32 = Liters	Grams / 1,000 = 1	Milligrams
4	R(T) = Total Recharge (feet)	2.80	feet	Days x 365 = Years	Grams x 0.00220	5 = Pounds
5	A = Area of Site	6,732,634	sq ft	Feet x $12 =$ Inches	Milligrams / 1,00	0 = Grams
6	$R = R(T) \times A$	18,851,819	cu ft			
7	R = Site Recharge Volume	533,883,507	liters	Nitrogen Load Summary - On-Site	Load	Percent
9	NR = N/R	1.76	mg/l	Sanitary Nitrogen (On-Site Wastewater)	1,721.90	83.31%
				Fertilized Landscaping	230.49	11.15%
B	Site Recharge Summary	Value	Units	Dog Waste Nitrogen	32.28	1.56%
1	R(T) = Total Site Recharge	33.60	inches/yr	Cat Waste Nitrogen	12.81	0.62%
2	R = Site Recharge Volume	18,851,819	cu ft/yr	Atmospheric Nitrogen	67.80	3.28%
3	R = Site Recharge Volume	141,021,407	gal/yr	Irrigation Nitrogen	1.64	0.08%
4	R = Site Recharge Volume	141.02	MG/yr	Total Pounds Nitrogen	2,066.91	100.00%
				-		

